Lesson 5.6 Cont.---The Discriminant

The discriminant is part of the Quadratic Formula that you can use to determine the number of real roots of a quadratic equation.

\[x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \]

<table>
<thead>
<tr>
<th>(b^2 - 4ac > 0)</th>
<th>(b^2 - 4ac = 0)</th>
<th>(b^2 - 4ac < 0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>two distinct real solutions</td>
<td>one distinct real solution</td>
<td>two distinct nonreal complex solutions</td>
</tr>
</tbody>
</table>

Caution!

Make sure the equation is in standard form before you evaluate the discriminant, \(b^2 - 4ac \).

Example:

Find the type and number of solutions for the equation.

1. \(x^2 + 36 = 12x \)
 - \(x^2 - 12x + 36 = 0 \)
 - \(a = 1 \)
 - \(b = -12 \)
 - \(c = 36 \)
 - \(b^2 - 4ac = (-12)^2 - 4(1)(36) = 144 - 144 = 0 \)
 - one real solution

2. \(x^2 + 40 = 12x \)
 - \(x^2 - 12x + 40 = 0 \)
 - \(a = 1 \)
 - \(b = -12 \)
 - \(c = 40 \)
 - \(b^2 - 4ac = (-12)^2 - 4(1)(40) = 144 - 160 = -16 \)
 - two different complex solutions

3. \(x^2 + 30 = 12x \)
 - \(x^2 - 12x + 30 = 0 \)
 - \(a = 1 \)
 - \(b = -12 \)
 - \(c = 30 \)
 - \(b^2 - 4ac = (-12)^2 - 4(1)(30) = 144 - 120 = 24 \)
 - two different real solutions
The graph shows related functions. Notice that the number of real solutions for the equation can be changed by changing the value of the constant c.

Example:
An athlete on a track team throws a shot put. The height y of the shot put in feet t seconds after it is thrown is modeled by $y = -16t^2 + 24.6t + 6.5$. The horizontal distance x in between the athlete and the shot put is modeled by $x = 29.3t$. To the nearest foot, how far does the shot put land from the athlete?

$t = 1.77 \text{ sec on calculator}$

$x = 29.3t$
$x = 29.3(1.77)$
$x = 51.86 \approx 52 \text{ ft}$
Properties of Solving Quadratic Equations

<table>
<thead>
<tr>
<th>Method</th>
<th>When to Use</th>
<th>Examples</th>
</tr>
</thead>
</table>
| Graphing | Only approximate solutions or the number of real solutions is needed. | \(2x^2 + 5x - 14 = 0\)
\[x \approx -4.2\text{ or } x \approx 1.7\] |
| Factoring | \(c = 0\) or the expression is easily factorable. | \(x^2 + 4x + 3 = 0\)
\[(x + 3)(x + 1) = 0\]
\[x = -3\text{ or } x = -1\] |
| Square roots | The variable side of the equation is a perfect square. | \((x - 5)^2 = 24\)
\[\sqrt{(x - 5)^2} = \pm \sqrt{24}\]
\[x - 5 = \pm 2\sqrt{6}\]
\[x = 5 \pm 2\sqrt{6}\] |
| Completing the square| \(a = 1\) and \(b\) is an even number. | \(x^2 + 6x = 10\)
\[x^2 + 6x + \boxed{9} = 10 + \boxed{9}\]
\[x^2 + 6x + \left(\frac{6}{2}\right)^2 = 10 + \left(\frac{6}{2}\right)^2\]
\[(x + 3)^2 = 19\]
\[x = -3 \pm \sqrt{19}\] |
| Quadratic Formula | Numbers are large or complicated, and the expression does not factor easily. | \(5x^2 - 7x - 8 = 0\)
\[x = \frac{-(-7) \pm \sqrt{(-7)^2 - 4(5)(-8)}}{2(5)}\]
\[x = \frac{7 \pm \sqrt{209}}{10}\] |

Helpful Hint

No matter which method you use to solve a quadratic equation, you should get the same answer.
Lesson Quiz:
Find the type and member of solutions for each equation.

1. $x^2 - 14x + 50$
2. $x^2 - 14x + 48$

3. A pebble is tossed from the top of a cliff. The pebble’s height is given by $y(t) = -16t^2 + 200$, where t is the time in seconds. Its horizontal distance in feet from the base of the cliff is given by $d(t) = 5t$. How far will the pebble be from the base of the cliff when it hits the ground?

\[t = 3.54 \text{s} \]
\[d = 5(3.54) = 17.7 \text{ ft} \]

HW: p. 361 30-35, 37a, 49-51, 53, 61-64, 78 = 16 problems